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The consequence of elastic unitarity and analyticity for the isobar model of isocalar three-pion scattering 
are derived. All recoupling effects are retained and a careful discussion of real pion exchange is presented. In 
this way we show how the isobar model may be made to satisfy Watson's theorem. We display the common 
origin of both these phenomena and obtain the modifications they generate in the partial-wave discontinuity 
equations. In preparation for a forthcoming treatment of one and two-pion exchange forces, the N/D equa­
tions are derived for the J=l~ isoscalar amplitude. The effect of recoupling in the narrow width approxima­
tion is demonstrated by a calculation of the effective p —T phase space and suggests that recoupling is 
important. 

1. INTRODUCTION [n only one angular momentum state and one isotopic 

THIS is, hopefully, the first of a series of papers in s P i n s t a t e i s v e ^ nearly>. i f n o t e f f ty ^ H e ? f W ! 

which a careful treatment of the isobar model is r e t a m t h e first characterization of the isobar model and 
applied to various reactions involving three-particle s e e k t h e f o r m o f t h e dependence on the resonance 
initial and/or final states. The isobar model1 is charac- energies w h " * Wl1* n o t v l o l a t e t h e ™ l t a n t y equation 
terized by the assumption that the amplitude in ques- ^Eqs. (3.17), (3.19)]. It is simple to show that this form 
tion may be written as a sum of terms, each one of a l s o s a t l s f i e s Watson's theorem8 which amounts to the 
which involves a definite pair of particles from the unitarity equations for the two particle-resonance 
three-particle state appearing in a state of definite channels. It is true that, in this paper at least, we set 
angular momentum and isotopic spin [Eqs. (2.7), UP t h e N/D equations for an approximation to the 
(2.8)]. The sum is an approximation because it is finite. f o r m w e h a v e derived. Nevertheless we now know the 

Experimentally, the model is motivated by the domi- e x t e n t t o w h l c h t h e approximation violates Watson's 
nance of two-particle resonances in three or more theorem and the direction to proceed should we wish 
particle final states of production processes.2 Theoreti- t o i m P r o v e upon it. 
cally the model has been studied by several authors3"7 I n Sec- 2 w e develop the formalism of the isobar 
in the past but always with an assumed form of the m o d e l f o r isoscalar three-pion elastic scattering. The 
dependence on the energy variables of the resonating absence of spinning particles and the existence of a pure 
pairs. This form violates the unitarity equation in the e l a s t i c r e g l o n m a k e t h e calculations comparatively 
principal channel and is usually claimed to be a good s i mP l e - The unitarity equation and assumed analyticity 
approximation if the two-particle resonances are of the isobar amplitudes are discussed and discontinuity 
"narrow." The p meson and the f, f pion-nucleon iV* equations derived in Sec. 3. In particular, we note that 
are not narrow, however, and the approximation in t h e contributions from the real exchange of one pion 
these most important cases seems unjustified. Regard- (FiS- *)9 a n d t h e recoupling terms in the discontinuity 
less of how broad the resonances are, their appearance equations have a common origin. Mandelstam et al* 
- have discussed the phenomenon of real particle exchange 

* Supported in part by the U. S. Atomic Energy Commission. for t he 2ir+N —> 2ir+N ampl i tude b u t t h e y neglect 
t Present address: Physics Department, University of Washing- „ , , v , n • . u *. 

ton, Seattle, Washington. all the recoupling terms. Harrington's6 more recent 
1 The name "isobar model" has been applied to a wide variety s t u d y of three-pion sca t te r ing proceeds similarly. 

of schemes for calculating reaction amplitudes. The only justifi- F r a z e r a n d Wong , 7 on t he Other h a n d , included the 
cation is that all these schemes assume that the amplitudes being • I T • • r i 
computed are dominated by the excitation and subsequent decay recoupling t e r m s in t he d iscont inui ty equa t ion for t he 
of two-particle resonances, commonly called isobars. 

2 M. Roos, Rev. Mod. Phys. 35, 314 (1963); this paper contains 
a large collection of further references. ..-.-^"""x 

3 We are referring here to the more recent calculations aimed at <j- ( ) 
determining the form of the reaction amplitudes via the unitarity FIG. 1. One-pion ^ - \ 
constraint and not the calculations of momentum distributions in exchange. \ 
final states as done by R. M. Sternheimer and S. J. Lindenbaum, T^~^\ 
Phys. Rev. 123, 333 (1961). 1 ) _ _ <r' 

4 P. Carruthers, Nuovo Cimento 22, 867 (1961); P. G. Feder- v - ^ " 
bush, M. T. Grisaru, and M. Tausner, Ann. Phys. (N.Y.) 18, 23 " 
(1962). 8 K. M. Watson, Phys. Rev. 88, 1163 (1952). 

5 S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker, 9 This phenomenon has been neglected in the otherwise more 
Ann. Phys. (N. Y.) 18, 198 (1964). ambitious calculations of L. F. Cook, Jr., and B. W. Lee, Phys. 

6 D. Harrington, Phys. Rev. 127, 2235 (1962). Rev. 127, 183, 297 (1962); and J. S. Ball. W. K. Frazer, and M. 
7 W. R. Frazer and D. Wong, Phys. Rev. 128, 1927 (1962). Nauenberg, ibid. 128, 478 (1962). 
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unitary cut but made no mention of real pion exchange. 
We believe this is the first work which has attempted to 
treat both effects on an equivalent basis.10 In Sec. 4 
the J=l~ amplitude is projected out with an eye to a 
subsequent study of the influence of one- and two-pion 
exchange forces on the appearance of the to meson. In 
carrying out the projection the angular integration 
sweeps over the real pion exchange (R.P.E.) pole, at 
certain energies, and thereby destroys the real analytic 
character of the partial-wave amplitude. This fact and 
its consequences for the unitary cut were first pointed 
out to the present writer by Paton.11 The result is that 
the discontinuity across the unitary cut is proportional 
to 

J l f ( . - . * + - . . ) * ^ ( " •*+•••) 
rather than 

M(---s---)M('-s+--) 

as Harrington assumes. We also claim, although the 
tedious algebraic derivation is not presented, that the 
R.P.E. cut into which the R.P.E. pole is projected must 
be approached from below in evaluating the physical 
amplitude. Paton has suggested the following argument 
for understanding this result; starting with Eq. (2.16), 

S+UJft=(T+(7,Jt-2fX7r
2
y 

we may regard t as being essentially the variable of 
integration in the partial-wave projection. I t is there­
fore forced to remain real. Holding s, a, and <J' fixed 
and real we notice that if the variation of t brings u up 
to the R.P.E. pole, then the physical amplitude is 
obtained by letting u pass over the pole, i.e., 

u—> u-\-ie € > 0 . 

To maintain Eq. (2.16) we are forced to give s a small 
negative imaginary part which means that in the pro­
jected amplitude s must pass under the branch points 
of the R.P.E. cut. As it stands this argument is not 
foolproof since it is not /, but some cos# which is con­
strained to be real in the partial-wave projection. 
Nevertheless, the result is the same. Finally in Sec. 5 
we introduce the "resonance approximation/' widely 
used in calculations of this sort, to reduce the problem 
of solving the unitary cut equation to a one-dimensional 
one. Deriving the "reflection properties" that are true 
of the partial-wave amplitude, we cast the discontinuity 
equation in a form amenable to the N/D method. The 
general equations of that method are then derived for 
this particular problem. 

A short appendix indicates the modification suffered 
by the effective phase space, R(s), from recoupling 
effects in the extreme approximation of replacing the 

10 The study of singularities on unphysical sheets by R. Hwa, 
Phys. Rev. 130, 2580 (1963), considers real particle exchange but 
assumes a form for the discontinuity equations which is incon­
sistent with the existence of the R.P.E. diagram. 

11 J. Paton (private discussion). See also J. E. Paton, Princeton 
University, 1962 (to be published). 

TT-TT scattering amplitudes in the integrals by appro­
priately normalized delta functions. 

The discussion of anomalous, or structure singu­
larities, has been postponed to the second paper where 
it will complement a "solution'' of the N/D equations 
developed here with the insertion of unphysical singu­
larities from one- and two-pion exchange. 

2. THE ISOBAR MODEL 

As a matter of convenience we restrict our con­
siderations to isoscalar states from the outset. The 
three-pion isoscalar "in" or "out" state satisfies the 
symmetry, 

\pip2p*±)=-\p*pipi±)= \p3pip2±), (2.1) 

required by the generalized Pauli principle. Conse­
quently, this state vector does not facilitate a discussion 
of scattering mechanisms which require an asymmetric 
treatment of the pions at intermediate states of calcu­
lation. Such a mechanism is provided by the isobar 
model which assumes that each scattering event is 
initiated by the formation of a two-pion resonance, 
involving a particular pair of incident pions, and 
terminated by the decay of such a resonance, involving 
a particular pair of final pions. For this reason we 
introduce extensions of the physical, isoscalar, three-
pion Hilbert spaces, 

3C3±H#i#2;M=>> 

to Hilbert spaces of lower symmetry. We denote these 
new vector spaces by St^ and write12 

| (pip*)p*±)= - | (p2pi)pz±), (2.2) 

for the general element of the corresponding asymptotic 
basis. We interpret Eq. (2.2) as that state which in the 
distant (future, past) consists of three pions, the 
bracketed pair of which interacts (last, first) in the 
isovector state. The relation between 3C3 and 3C3 is 
defined by 

\PIP2PZ)=K\ (Plp2)ps)+ | (P2ps)pl) 
+ I(#8#i)p2>], (2.3) 

where we have suppressed the " in" and "out" signa­
tures. In other words, 3C3 is the fully symmetrized 
subspace of X3 . Notice that Eq. (2.1) is a consequence 
of Eqs. (2.2) and (2.3). The factor £ in Eq. (2.3) is 
chosen so that the normalization, 

((pip^ps'lip^P^^fdipz^THpi^pi)^^) 
-*(pi,P*')t(p2,P2')l, (2.4) 

yields for the unit operator in 3C3 

7 3= / dpidp2dp31 pip2pz)(pip2pd| , (2.5) 

12 In the language of wave mechanics, the state vectors (2.2) 
correspond to the isoscalar projection of a product of a single-pion 
wave function and an isovector two-pion wave function. 
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where 

8p=d*p/2p0; 5(p,p') = 2p0d*(p-p')> 

Let T be the scattering operator. Since the p meson 
is a vector particle13 the isobar model is characterized 
by the equation 

<(pip2)pi\T\(PiP2)Pz)= Z E F 1 V ( / ? 3 W) 
X'=-l \ = - i 

X<(<?'; lX'WI^I (q; 1X)^>F1X*(/M, (2.6) 

where X, X' and q, qf are the helicities and four momenta 
of the initial and final p mesons, respectively. The 
angles ft and ce3 are the polar and azimuthal angles of 
pi in the center-of-mass system of the pair {pip%). The 
z axis of the coordinate frame points along — p3. Similar 
considerations apply to the angles /33' and a3'.

14 Through 
Eq. (2.6) the three-particle scattering problem pre­
sented by the matrix element 

{pip2p%\T\pip2pz) 

is reduced to an effective two-particle problem with the 
complication that one of the "particles" has a variable 
mass 

q2 = a ; qfz = a'. 

Let (j,J2,jd) denote that even permutation of (1,2,3) 
which starts with j . Using this notation we can write 

(pip2ps | T | pip2ps) 

= * E ((PhPh)P/\T\ (Pnph)pi) (2.7) 

and 

((PhPh')p/\T\(phPn)pi)- E E rlv(j8/,a/) 

\ '=_1 x = - l 

X((q/; mp/\T\ fo; l\)Pi)Ylx*(fii9ai), (2.8) 

where 
qi-pi&Pn q/ = Ph+Ph. (2.9) 

Now among the scattering events there are those in 
which one of the pions never interacts but passes 
through as a free particle while the other two pions 
scatter (Fig. 2). Although these events do contribute 
to the scattering amplitude, they do not involve the 
three-particle interaction and hence are not interesting. 
Furthermore, we eventually wish to work with ampli­
tudes which are analytic functions of their variables and 
these disconnected events contribute three-momentum 
delta functions which conflict with the desired 
analyticity. Writing TD for that part of T contributing 

13 J. Anderson, V. Bang, P. G. Burke, D. Carmons, and N. 
Schmitz, Phys. Rev. Letters 6, 365 (1961); A. R. Erwin, R. 
March, W. D. Walker, and E. West, ibid. 6, 628 (1961). 

14 We have followed the conventions of M. Jacob and G. C. 
Wick, Ann. Phys. (N. Y.) 7, 404 (1959) in choosing angular 
variables. 

I N I S O B A R M O D E L . I B 5 5 3 

FIG. 2. Disconnected part. 

the disconnected events, we have (from the inter­
pretation of 5C3) 

((PhPh)p/\TD\(pi2pn)Pi) 

= $Hpi,p/){phPh\T\pi2Piz), (2.10) 

where the factor of 3 is necessary to yield 

(pip2fp3,\rD\p1p2pd)=i z ifap/) 

X(ph'Ph\T\PnPn). (2.11) 

Writing Tc=T—TD and factoring out the total four-
momentum delta function, we have 

((q/;Wp/\Tc\(qi;to)pi) 

= V(P-P')((q/; l\')p/\tc\ fe; 1X)^>, (2.12) 

P^qt+Pt; P'=q/+P/ 

and we assume ((qf; 1X')^' \tc\ (q; 1X)̂ >) to be an analytic 
function of its scalar variables. 

What are the scalar variables? If the squared 
"masses" 

qz=a- q'2=a< (2.13) 

are held fixed, then the scattering process described by 
Eq. (2.12) is kinematically identical to the familiar 
two-particle case15 with the variables 

s={q+P)*=U+p')%, (2.14a) 

t=(q'-qy=(p'-py, (2.14b) 

u=W-p)*=(q-p')%. (2.14c) 

Thus we can write 

<(?'; \\')pf\tc\ (q; l\)p) = tc^(a'; s,t,u;a). (2.15) 

These variables are not all independent. They are 
connected by 

s + Z + ^ ^ ^ + H - V . (2.16) 

Finally, introducing the subscripts which refer to 
specific pions we write 

((q/; l X ' W I M (qn lX)^) = /c
x'x(<r/; SUM; <n), (2.17) 

where the notation is clear. 

3. UNITARITY AND ANALYTICITY 

The scattering operator T satisfies 

r - T t = 2 i r t r (3.1) 

in the physical Hilbert space. Operating in the three-
pion isoscalar subspaces ZC^ the approximation to 

15 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
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elastic unitarity may be written in operator form as 
73= I dpidp2&pi\(pip2)ps)((pip2)p3\ 

T-P=2iTVz±T, (3.2) J 

where ^3 is defined by Eq. (2.5). The extension of Eq. r 
(3.2) throughout Stz± can at most involve additional = £ / dAqzp{vz)dpz\ (q%\fo)pz){(qz)l^)pz\ , (3.4) 
terms which vanish in the fully symmetrized subspaces z,x * 
ZC^. Since the form of the unitarity equation is sig­
nificant only in the physical subspace, we adopt Eq. | (plp2)pz){(p2pz)pi\ = E / dAqp(<Tf)dp' 
(3.2) throughout Stz±. Note that since 1% is not the unit i\\'n J 
operator in 563, Eq. (3.2) is not the same as Eq. (3.1) r 

even for matrix elements with X / &A((l p(<j")dp" \ (q'; l'\')p') 

P2<25/x7r
2 

which defines the pure elastic region. _ X((q';l'X')p'\ {p^)p,){{p^)Pl\ (q";l"X")p") 

In taking matrix elements of Eq. (3.2) in 3C3, we X ((<?"; lf,\")p"\ , (3.5) 
will find the following relations useful: where 

\{*^)=T.\hMpt)Y*M\ (^) PM=![(-W)A;P. (3.6) 
'•x Employing Eqs. (3.2)-(3.6) we obtain 

{(q';l\')p'\T-V\ (q; l\)p) = HT, IW''PW'W''<(«''; W \T* \ (q"; Vk")p")({q"; \\")p"\T\ (q'l\)p) 
x" J 

+¥ T,n IdYpWW jdY'p(.<r'"W"((q''; l\')p'\F\ (q";l\")p")C^"^'"(q"p";q'"p'")di(P"-P'") 
XW"-p'y-^)((P'";W")p'"\T\(q;l\)p), (3.7) 

where 

P{p>>-p'")6((f'-p>y-l*,*yc*''v'«''^ 

X<(ptpt)pi\W";l'"X"W"). (3.8) 

We call the function C the recoupling coefficient.16 Factoring out four-momentum delta functions to obtain the 
reduced amplitudes and separating off the matrix elements of tc, we get 

{(q';i\')p'\tc-t;\ (q; l\)p)=2ip(a')f(<rj)[<(<?'; 1X')^'W (q; 1X)#> 

+ 2 E jVq"PW')dp"C^"(q>p>; q"p"mP"-P)8«q"-py-^X(q"; l\")P"\h\ (<?; 1X)^>1 

+HT fdYp(<r")dp"[{(q';W)P'UJ\ (<?"; ix")/>" W ' - i W ' ; \\")p"\tc\ (q- \\)p) 

+2 -£ (dY'pW"W"{(q'; IX'^WI W; lX")p")8^P"-P'")Cw'-n'"(q"p''; q"'p'") 
V" J 

X5«q"'-P'y-^)HP'"-P)((q'"; VK'")p'"\tc\ (q; lX)^)]+2i[((g'; \\')p'\tj\ (q; 1\)P) 

+2 E jdYpW'WW; W l m (q"; ix")^")c^"^(?'y; < ? / > W ' - P ) S ( ( 9 " - / > ) 2 - ; 0 ] 

Xp(<T)f(<T+) + Uip(<T')f(<Tj)8((q'-py-»J)C™^(q'p'; qP)f(<r+)p{a), (3.9) 
16 The recoupling coefficient is closely related to a quantity of the same name appearing in the reference of footnote 14. 
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where 

f(*+)=(q;l\\t\q;l\) (3.10) 

is the isovector, P-wave, TT-T scattering amplitude and 

<(<?'; l\')p'\TD\(q; l\)p)=38(p,p>)8*(q'-q)Syif(cr+), 

as a consequence of Eqs. (2.10) and (2.8). 
In the previous section we assumed that 

<(Pi'P*'W\to\ (pip*)p)=tc(&a';stu; c7$) (3.11) 

was an analytic function of its scalar variables, where 
$ ' = {a'fi') and <£= (aft). To extract information from 
Eq. (3.9) concerning the analytic structure of the 
helicity amplitudes, 2C

X'X, we must relate the left-hand 
side of Eq. (3.9) to the process of analytic continuation. 
For this we assert a generalized reflection principle 
which has been claimed to hold in perturbation theory.17 

Holding the angular variables fixed and letting the 
scalar variables assume complex values, we write 

tc($'a';stu; o$ )*= / c ($V* ; s*t*u*; <r*$). (3.12) 

From Eq. (2.6) the corresponding relation for the 
helicity amplitudes is 

/ c x / x ( ^ M * = ^ r v " x ( ^ V / * < r * ) . (3.13) 

We also need time reversal invariance in the form 

t*\<j'stuo) = / c-x-x / (crstua'). (3.14) 

Combining Eqs. (3.13) and (3.14), the left-hand side of 
Eq. (3.9) becomes 

/C
X'X(<T+S+t+U+<T+) — tc

VX(<T-!SJ,-U-.<7-) , (3.15) 

where the signatures indicate the manner of approach 
to the real axis in the customary fashion. 

Notice that we have allowed for the possibility of 
singularities in the momentum transfer variables t and 
u, notwithstanding our concentration on the physical 
region of the s channel. This allowance is superfluous 
in the case of t but the one-pion exchange pole (Fig. 1) 
in the u variable does, in fact, lie in the physical region. 

# FIG. 3. Contribu­
tions of elastic uni-
tarity. 

-XXr-—^. 

zXX.- -JOTZ: 

This is a consequence of the possibility of exchanging 
the pion as a real particle in the physical region. Indeed 
a little calculation shows that the discontinuity upon 
crossing the pole is exactly given by the last term on the 
right of Eq. (3.9). Notice that from Eq. (2.14c) the 
delta function appearing in that term may be written 
as diu—firr2). If we were concerned with higher energies, 
we would also have to consider the elastic branch cut 
in u since the real exchange of three pions would be 
possible. 

We can expand Eq. (3.15) to separate the singularities 
associated with individual variables: 

= [XX'X (or+S+tu+a+) — /c
x 'x (o-J's+tu+<r+)2 

+ £tc
x'x(cr-/s+tu+(T+) — tc

K'x(crJs-tu+(T+)~] 

+ [te*\<rJsJLu+cr+) - tc
vx(<j_!s-tU-<r+)~] 

+ [tc*\crJsJLu-jT+) - tc^(*Js-tU-aJ)l. (3.16) 

Since each of the terms on the right of Eq. (3.9) have 
obvious diagrammatic representations (Fig. 3) we can 
follow the prescriptions of 5-matrix theory for asso­
ciating singularities with intermediate states and write 

d,W\<T+'s+lu+<r+)3=2ip(a')f(A((q'; l\')p'\tc\ (q; l\)p)+2 £ / ' < f y ' p ( 0 # " C 1 V ; I X ' W ; q"p") 
L \" J 

X8«q"-py-^MP"-P)((q"; l\")p"\te\ (q; 1A)#>] , (3.17) 

dsZtc^(aJs+tu+<r+)2 = li'Li (diq"pW')dp"{(q";\\"\tc\ {q'; lX')#>*[V(P"-P)<fo"; \\")p"\tc\ (q; l\)p) 

+2£ C JdY'pW" )dp'"8i(P"-P'")C^"^'"(q"p"; q'"p'")S({q'"-p")2-^2) 

X8*(P'"-P)((q">; l\'")p'"\tc\ (<?; 1X)#>] , (3.18) 

17 See the references in footnote 9. 
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d<r[/c
X 'X (<T-JS-tU-JCT+ )~\ — 2i\ ((q; \\)p\tc\ (q'; l\')i>'>*+2 E / A " P ( 0 < ¥ W J 1X")#"KI (?'; W > * 

x" J 

X C » " " H « " # " ; ? ^ ( P " - P ) 5 ( ( g " - # ) « - ^ ) ] p W / ( a + ) , (3.19) 

where 
rfJIF(^)]=(F(^)-F(^)). 

To the best of the present writer's knowledge, 
previous applications4-7 of the isobar model to three-
particle channels have neglected the second terms on 
the right of Eqs. (3.17) and (3.19) while the corre­
sponding terms in Eq. (3.18) have been included by 
some7 and neglected by others. Our derivation points 
out the common origin of these terms and in the case of 
Eqs. (3.17) and (3.19) these terms suffice to make the 
full amplitude (pip2pz\tc\pip2pz) satisfy Watson's 
theorem. For our purposes Watson's theorem amounts 
to the equation 

d<j/l{pip2p,'\tc\pip^)'] 

* ! • 

2i / dphfdphf{phrpjZ
f\t\ph

nph
f,Y 

X {ph'Ph'Pl I tc | Plp2p'6) , 

for the final state variables and a similar equation for 
the initial state variables. The recoupling terms in 
(3.17), (3.19) can be shown to yield these simple crossed-
channel unitarity equations for the full connected ampli­
tude. I t is also clear from the appearance of the delta 
functions of the form, Kitf—pY—V-i?), in the "re-
coupling" terms of Eqs. (3.17)-(3.19) that these terms 
contribute in the same region of phase space as R.P.E. 
Therefore a treatment of R.P.E. which ignores these 
terms seems inconsistent. 

In the next section we project out the / = 1~ ampli­
tude so we can focus attention on the state in which the 
o) meson should appear. The existence of the R.P.E. 
pole, which lies in the physical region, requires some care 
in carrying out the calculations. 

4. THE / = 1 - AMPLITUDE 

The states with definite total angular momentum / , 
in the c m . frame, and JZ=M satisfy14 

\PJM(*lk)) = dlj fdtt&jnJ(B,<l>,0)\(qilk)p), (4.1) 

where 
9lj=\(2J+l)/br\w, 

cr=q2, 

(4.2) 

and 0, <j> are the c m . polar and azimuthal angles of q 
relative to the z axis along which M is defined. We 
therefore define 

/jx'x(o-+V^+) = ^J2 / dQ'dQ£>M\>J(a0* 

X / C X , X ( ^ + V ( ^ ) ^ + ^ ) ^ + ) ^ M X / ( 0 ) , (4.3) 

paying due regard to the signature of the variable u. 
I t follows from Eq. (4.3) that the partial-wave ampli­
tude does not satisfy a simple reflection property like 
Eq. (3.13) since 

Xtc
x'*((rJs-t(Q\tt)u+(tt,tt)aJ)®MX

J(tt). (4.4) 

Consequently, when the discontinuity equations for 
the partial-wave amplitude are calculated, it will not 
be possible to replace expressions like 

by 
lj^"(<rJs-<rJ')h*"*(a+"s+a+). 

These considerations have been pointed out by 
Mandelstam et al.6 and more recently by Paton11 but 
they have not, heretofore, been applied to the three-
pion problem. 

Bearing in mind the precautions we have discussed, 
the derivation of the discontinuity equations for the 
partial-wave amplitudes is tedious but straightforward. 
Finally, for the case J= 1, the negative parity amplitude 
can be constructed according to 

= M(afso) (4.5) 

and the resulting discontinuity equations are 

d„,[M0+ V + ) ] = 2if(<rJ)p(A M(<r+'s+a+) + 2 f da"p(s,<T")C(.*'sa")M(<T+"s+<T+)j , 

d.[Af(<r_'5+<r+)] = i i /da"p(s,<T")M(<r+'s+a+")*M(<T+"s+<T+) + ii Ida"p(s,a") j ' da'"p{s,a" 

(4.6) 

X l f ( < r + ' W ) W w " O M ( < r + ' V + ) - (4-7) 
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dJiM{ff+'s+<T+)~] = 2i\ 

where 

M(a+'s+<r+) + 2 / da"p(s,<x")M(<r+'s+<T+")C(<r"s<r) p(.*)f(o--), (4.8) 

P ( ^ ) = D 2 ( ^ ) / 4 * 1 / 2 > W , (4.9) 

Q(s,<r) = ( 1 / 2 ^ ) { | > - (<r"*+M ,)2] |>- {a^-^fW, (4.10) 
and 

-3 
C(ff>s*) = — £ fdQ'dQ^Mv(n'r(-iy^+^C^-i\q'p';qp)8aq'-py-^2)^M^). (4.11) 

8x |x'| =i J 
IM=i 

Notice that to obtain Eq. (4.8) from Eq. (3.19) we must first take the complex conjugate of both sides of Eq. 
(3.19) and then project partial waves. Note also that as a consequence of the definition Eq. (4.5), M{cr'scr) is 
symmetric 

M(<T'S<J) = M(<TS<T'). (4.12) 

The equations (4.6) and (4.8) which describe final- and initial-state interactions can be simplified somewhat if 
we factor -K-TT scattering amplitudes and threshold factors out of M. We write 

<2(V) Q(s,<r) 
M (?'**)= f(a')F(a'sa)f(a) , (4.13) 

and using 
•QM , • 

.P(<r) 

QM Q(s,<r) 
<*,[/(«+)] = 2i——f(<r+)p(<r)f(a_) , (4.14) 

P(a) P(a) 

which holds in the physical region 4n,2<<r< (sll2—p,w)2, we find for F(a'sa), 

PW) f (?(V) 
d.m*+s+°+)l = 4kW)——- / da"C(<T'sa")P(s,a")~7~-f(a+")P(<7+"s+ff+), (4.15) 

Q(s,a ) J P{(7 ') 

r Q2(s,*") r r 
dlF(<rJs+a+)l = iiJ da"p(sS')-—7-\f(<T'')\*F(a+>s+<j+'TF(<r+''s+<T+)+±i da"p(s,a") / da'"p(s,a'") 

Q(s,a") Q(s,a'") 
xFwwr—/(oc(^'o/(o—?wv+) , (4.i6) 

and 

rfff[F(<r+
,j+(r+)] = 4f / da,/F(a+'s+*+

,,)f(v+") p (V)C(cr"*r ) p(<r) . (4.17) 
J P(cr") Q(s,a) 

If the recoupling terms had been neglected in Eq. (4.6) real axis in the physical region and extends between 
and Eq. (4.8) then F(a'sa) would have no elastic cut s^ and s ( + ) where 
in G and a. The simplification represented by Eqs. , 4 

(4.15)-(4.17) could have been effected without factoring s(±) J^__.^__^ { ^ ( c r ' — V ) (o— 4/x2)}1/2. (4.18) 
the threshold behavior. We assume, however, that these 2/z2 2JU2 

factors contain the extra kinematical singularities 
generated by the partial wave projection, as is the case This cut corresponds to real pion exchange. The other 
with two-particle scattering. This notion is supported branch cut lies on the real axis in the unphysical region 
by the appearance of just these factors in the projection between s = 0 and s = — QC and corresponds to virtual 
of the one-pion exchange amplitude. pion exchange. Since the first cut lies in the physical 

The singularities explicitly represented by Eqs. region of the real s axis, why doesn't it contribute to 
(4.15)-(4.17) are not the only ones lying in the physical Eq. (4.16)? The answer is that a careful treatment of 
region. The partial-wave projection transforms the the partial-wave projection of the O.P.E. amplitude 
O.P.E. pole into two branch cuts in the s plane for fixed shows that the physical amplitude must be evaluated 
a and a-'.6 One of these branch cuts lies on the positive by approaching the R.P.E. cut from below. Since Eq. 
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SH RPE branch points 
S plane 

normal threshold 
branch point 

FIG. 4. Distortion of branch cuts to permit continuation from 
within interval, S(-) <S<S(+). 

(4.16) gives the discontinuity upon jumping from above 
the unitary cut to below it, we receive no contribution 
from the R.P.E. cut which we are below from the start. 
The evaluation of the physical amplitude "between" 
two branch cuts, both of which lie on the real axis, does 
not violate the assumed analyticity of the amplitude 
since the branch cuts can be distorted to allow con­
tinuations from within the interval defined by Eq. 
(4.18); see Fig. 4. 

To determine the discontinuity in F(aJs+a+) upon 
jumping the R.P.E. cut, we refer back to Eqs. (3.9) 
and (3.16)-(3.18). These yield 

duZt™(*-'s-Jtot*+)l= 12if(<rJ)p(</)C*Wtfp'i qp) 
X8(u-nr*)p(*)f(*+), (4.19) 

where Clx'ilx(q'p'; qp) is given by Eq. (3.8). From Eq. 
(3.14) and (3.15), we have 

dj[te
x'x (<rJs+tu+<r+)2 = du\jc~

x~Xf (<r+s+tu+<rJ)~] 
== [/c

xx' (<r-JSJU-xr+') - /c
xx' (<T-S-tu+<T+')~f 

= -du[t™((r-s-tu+<j+
,)1*= + 12i/(tr+)p(er) 

XCW(qP; < Z W ( « - M , W ) / ( < 0 > 
where Eq. (4.19) was used for the last step. Finally 
from Eq. (3.8), 

&W(qP; q'p')*=C^(q'p';qp), (4.20) 
so that 

dwpc
x'x (aJs+tu+(T+)2 = 12if(<rJ)p (</) 

€*"'*(&', qP)8(u-^)p(a)f(<r+). (4.21) 

But the partial-wave projection of the left side of Eq. 
(4.21) is just what we mean by the discontinuity of 
M(<T-s+(r+) across the R.P.E. cut. Hence from Eqs. 
(4.3) and (4.11) and (4.21) we find 

M (crJs+<r+) — M (<rJs++cr+) 
= 12if(<rJ)p(</)C(t/s<r)p(*)f(<r+), (4.22) 

where the signature + + on the left side of Eq. (4.22) 
denotes evaluation above both the unitary and R.P.E. 
cuts. The corresponding discontinuity for F(<rJs+<r+) 
is obtained from Eq. (4.13) as 

PW) 
F(aJs+a+)~F(aJs++a+) = 12i p(<r')C(a's<j) 

5. N/D EQUATIONS FOR THE RESONANCE 
APPROXIMATION 

If we introduce the "kernel" 

e2(v) 
K(a'sa) = ±5(a'-a)p(s,a) - | / ( < r ) | * 

Q(sJ) Q(s,a) 
+Msy)——f^)C(^sa)f(a+)---p(sJa) , (5.1) 

I V ) P(a) 

then Eq. (4.16) becomes 

ds[F{aJs+<j+)~]=:2i (d<j"d<T"'F{<j+
fs+(7+")* 

XK{<j"s<jf")F(<T+"fs+<T+). (5.2) 

Notice that Eq. (5.2) relates the discontinuity in s of 
F((r-Js+<r+) to the function F(<r+s+<r+), i.e., to the F 
function with all signatures positive. Hence, a conse­
quence of the existence of elastic a and </ cuts in F is 
that we cannot apply the N/D method to Eq. (5.2) as 
it stands. We must replace the F's on the right of Eq. 
(5.2) with F functions having one a signature negative. 
This requires us to solve the integral equations, 

F(<r+'s+<T+") = F(a+'s+<rJ') 

+ 2 fda,,/F(cT+
fs^a+

//f)H(af/,saf), (5.3) 

and 

F(<T+"'s+<T+) = F(*J"s+<r+) 

+2 fda"H(a "sa'")F(<r+"s+a+), (5.4) 

which come from Eqs. (4.17) and (4.15), respectively, 
and have the kernel, 

Q(saf) P(a) 
H(a,sa) = 2if((T+

/) pMCia'sa) p(a) . (5.5) 
iV) QM 

In this paper we will not attempt an exact solution 
of these difficult equations but instead introduce the 
resonance approximation. This approximation is 
effected by writing in Eq. (5.3) 

/ 

XPW-

Q(s,a') 

Q(s,«) 
= 2iy(<r'sff). (4.23) 

d<T'"F(<T+'s+<T+'")H{<T'"s<7") 

= F(o-+'j+f»(H.») fda'"H(a'"sa") (5.6) 

and correspondingly for Eq. (5.4). One argues that the 
resonance behavior of f{<r+") results in the interval 
around O-"~TOP

2 dominating the integrand and in this 
interval one hopes the variation of F to be unimportant. 
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The solutions of Eqs. (5.3) and (5.4) become 

F((T+
fs+mpJ) 

+ 2 a ( V > 
1 — 2a(s,m2) 

, (5.7) 

F(o-+'"s+<T+) = F(aJ"s+a+) 

where 

F(mpJs+(r+) 
+ 2a(s,a'") , (5.8) 

1 — 2a(s,mp
2) 

a(s,a)= fda'"H(*"'sa). (5.9) 

Upon substitution into Eq. (5.2) with yet another 
application of the resonance approximation we obtain 

ds[F(<rJs+<T+)~]= 2iF(<j+'s+nipJ)* 
XR(s)F(mpJs+a+), (5.10) 

where 

*M— 
/ * " / 

da'"K(<r"s<r'") 

| l -2afeOT p
2 ) | 2 

(5.11) 

is real as a consequence of the Hermiticity of K. Finally, 
to apply the N/D method we must eliminate the 
operation of complex conjugation appearing, on the 
right-hand side of Eq. (5.10).18 To do this we write first 

M(<r+'s+<rJ) = - (3/4ir) E ( - 1)*(X+X,) 

|X ' | , IM-1 

X / ^ , ^ ^ M X / ( ^ 0 ^ C X , X ( O - + V ( ^ , ^ ) ^ + ( ^ / ^ ) ^ - ) 

X W ( Q ) , (5.12) 

: idtti 

which follows from Eqs. (4.3) and (4.5). Next, using 
Eq. (3.13) and properties of the rotation matrices, we 
find 

I f (<7+'s+cr_)*= - (3/4TT) £ ( - 1)*<X+X,> 
| X ' | . 1 X 1 = 1 

X / ^ ^ O S D M X / ^ O * ^ ^ ^ - ' ^ ^ ^ ) ^ - ^ ^ ) ^ ) 

But 
X S W ( Q ) . (5.13) 

/c
x 'x (<rJs-tU-<r+) = tc

V)'((T-rS-.tu+<T+) 

—du\jcx'x (crJs-.tu+<r+)2, 

and from Eqs. (4.19) and (4.21) 

du[tc
X'X(<T-!S-.tU+<T+)~] = duZtc

K'X(<TJs+tU+(T+)'l. 

Therefore, making the appropriate substitutions in Eq. 

18 In the simpler two-body scattering problems, if it were not 
for the reflection property, f(s+)*=f(sJ), of the partial-wave 
amplitudes, the N/D method could not be applied to the unitarity 
equation 

2iImf(s+)=2ip(s)\f(s+)\*. 

(5.13), we find 

M(<r+'s+xr-)*= M(<rJs.jj+) 

-ZM(*-'s+4*r+)-M(<rJs+j<r+)l. (5.14) 

From Eqs. (4.13) and (4.23) we then find 

F(<T+'s+cr-)*=F((rJs-.<T+)+2iy(a'sa). (5.15) 

This enables us to replace Eq. (5.10) by 

ds[_F (<rJs+a+)'] = 2iF (<j-'s-.tnp+
2)R(s)F (mpJs+a+) 

~4v(*'sM2)R(s)F(fnpJs+a+), (5.16) 

which is susceptible to the N/D method. 
Let D(<r-/,s+) be an analytic function of a' and s 

possessing as its only singularity in s a branch point at 
s=9/j,ir

2 with the branch cut running along the positive 
real axis. We leave open, for the time being, the de­
pendence on <jf. Defining Nfa'sa) by 

F(aJs+a+)-D(aJs+)F(mpJs+a+) = N(aJs+a+), (5.17) 

we will show that it is possible to choose the discon­
tinuity of D(a',s) across the s cut so that 

dlN(<rJs+<r+)l=0. (5.18) 

Bear in mind that we are talking about the cut in D or 
N arising from the unitary cut in F, i.e., from Eq. 
(5.16), and we cannot conclude that N has no s cuts 
in the physical region. Indeed, since we desire D to 
carry only the unitary cut, it follows that N must 
contain the R.P.E. cut, as well as all unphysical 
singularities. Thus in the physical region we will have 
to supplement Eq. (5.18) by 

i ^ ( ( r V J - ^ ^ V + ) ^ 0 , (5.19a) 

D(<rJs++(r+)-D((rJs+<r+) = 0. (5.19b) 

The solution of Eq. (5.17) is 

F(aJs+(x+) = N(<rJs+a+) 

+D(*Js+)N(mpJs^+)/ll-D(mpJs+)l. (5.20) 

Calculating the discontinuity across the unitary cut 
on both sides of Eq. (5.17), substituting Eq. (5.16) on 
the left and Eq. (5.18) on the right and finally factoring 
out an over-all factor of F(mpJs+<r+) we get 

dJCD(<rJs+)3= 2iR(s)N(aJs+mp+
2) 

- 4R(s)[y (v'sni2) -D(crJsJ)y (m2sm2)3. (5.21) 

For the discontinuity across the R.P.E. cut, we find 

N(*Js++<rJ-N(*JsiAr+)=-Z2iy(o's*) 
-2iD(<xJs+)y(nips<j)1 (5.22) 

and a similar equation holds for all unphysical singu­
larities. Equation (5.21) can be simplified by intro­
ducing a function, g(s), such that 

dsZg(s+)l=4R(s)g(s-h(mP
2stn2). (5.23) 

Defining 
k(crJs+) = D(<r_'s+)/g(s+), (5.24) 
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we get from Eqs. (5.21), (5.23) 

R(s) 
dlh(aJs+)1 = 2i lN(aJs+mp+

2) 

+2iy(<r'sm*)l. (5.25) 

Now that we have separated the unitary cut and 
the R.P.E. cut by placing them in different functions, 
we can display the sense in which F(<rJs+<r+) is evalu­
ated "between" two colinear cuts in a very picturesque 
manner. We simply note that 

while 

D(aJs+)= lim D[af, s+ie), 
e->0+ 

N(<r-'s+<r+) = lim N(a', s-ie, o+) . (5.26) 

Hence restricting ourselves to functions defined only 
on the physical sheet it is not possible to write 

F {<?-.'s+<r+)= lim F{aJ, s+ie, <r+). 

This does not contradict the analytic character of F. 
I t simply says that F is not everywhere the boundary 
value of a continuation of F into the physical sheet. 
In the vicinity of the R.P.E. cut we must first cross 
over the real axis into the second sheet, bypass the first 
R.P.E. branch point, and then approach from below 
the real axis and the boundary of the physical sheet. 

In the sequel to this paper we will look for the co-
meson resonance as a consequence of one- and two-pion 
exchange forces. I t follows from Eq. (5.20) that we 
need only concern ourselves with D(mpJs+) for that 
problem. Hence, as we would expect from an exact 
treatment19 the position and width of the co will not 
depend on </ or a. 
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APPENDIX: EFFECTIVE PHASE SPACE IN 
THE NARROW WIDTH LIMIT 

If in Eqs. (5.1) and (5.9) we make the substitutions 

/(**) = 
and 

mp
2~a~iy[_P^(a)/4a1l2'] 

7p 3 / 4 ( T l /2 

(mp
2-(7)2+72P6/16o-

(Al) 

T8(mp
2~a) (A2) 

then R(s) is easy to calculate. This approximation is 
more justified the narrower the width of the p meson, 
i.e., the smaller y is. Hence, if recoupling effects are 

19 R. Blankenbecler, Phys. Rev. 122, 983 (1961); see also the 
reference of footnote 9. 

FIG. 5. p-ir phase space with and without recoupling. 

negligible for the case of p-x scattering,20 this calculation 
should yield an effective phase space, R(s), which 
deviates only slightly from the result of neglecting 
recoupling 

Ro(s) = 3TTY<23( W ) / 4 * 1 / 2 • (A3) 

The calculated result is shown in Fig. 5. 
20 Dr. E. Abers, California Institute of Technology, has in­

formed me that an attempt to treat real pion exchange in p-ir 
scattering while treating the p meson as a stable particle (no 
recoupling) violates unitarity. 


